Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

Curriculum and Syllabus

for

M.Tech

Power Electronics and Drives

(Two Year Full Time)

Regulation 2015

(Based on OBE)

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

VISION

To become a leader in providing education and training in the field of Electrical and Electronics Engineering to the aspiring graduates to be competent in their profession.

MISSION

- To develop innovative, competent, efficient disciplined and quality Electrical and Electronics Engineers.
- > To enrich knowledge and encourage the students to become Entrepreneurs.
- To produce Engineers who can participate in Technical Advancement and Social enlistment of the country and to meet the growing global challenges.
- To prosper in Academic Activities by continual improvement in Teaching methods, Laboratory facilities and Research activities.
- > To develop consultancy for various industries.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1	Design and develop innovative products and services in the field of Power Electronics & Drives
PEO2	Keep abreast with the latest technology and toolset.
PEO3	Communicate effectively to propagate ideas and promote teamwork
PEO4	Attain intellectual leadership skills to cater to the changing needs of power industry, academia, society and environment

Mapping of Mission (MS) with Program Educational Objectives (PEOs)

	PEO1	PEO2	PEO3	PEO4
MS1	2	1	2	2
MS2	2	2	1	1
MS3	1	2	2	2
MS4	1	2	1	1
MS5	2	1	2	2
1 - Slight	ly	2 - Supp	ortive	3 - Highly relat

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

GRADUATE ATTRIBUTES:

The Graduate Attributes are the knowledge skills and attitudes which the students have at the time of graduation. These attributes are generic and are common to all engineering programs. These Graduate Attributes are identified by National Board of Accreditation.

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/Development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The Engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mapping of	Program	Educational	Objectives	(PEOs)	with	Graduate	Attributes
(GAs)							

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA 12
PEO1	3	3	3	2	3	2	2	1	2	1	3	3
PEO2	1	1	2	2	3	2	2	1	1	-	-	3
PEO3	-	-	-	-	-	1	-	-	3	3	2	2
PEO4	2	3	3	3	3	3	2	1	-	-	-	3

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PROGRAMME OUTCOMES (POs)

- 1. Design and develop power electronic circuits and drive systems
- 2. Deliver technological solutions in the field of power electronics and drives by assimilating advances in allied disciplines
- Simulate and experiment in the field of power electronics and drives using modern tools
- 4. Design renewable energy systems to protect environment and ecosystems
- 5. Practice professional ethics with social sensitivity
- 6. Develop innovative and entrepreneurial solutions
- 7. Develop an attitude to learn with self motivation
- 8. Communicate effectively at all levels and demonstrate leadership qualities
- 9. Pursue research to enhance the existing pool of knowledge

Mapping of Program Educational Objectives (PEOs) with Program Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
PEO 1	3	3	3	3	-	3	1	1	3
PEO 2	2	2	2	2	-	-	3	-	3
PEO 3	1	1	1	2	2	2	1	3	2
PEO 4	3	3	3	3	2	3	1	2	3

1- Slightly

2 - Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA 12
PO1	3	2	2	1	1	2	1	1	1	2	2	1
PO2	2	3	3	2	1	2	1	1	2	1	1	2
PO3	2	2	2	3	3	1	2	1	1	2	1	2
PO4	2	2	3	3	1	2	1	1	2	2	1	2
PO5	2	1	3	2	3	3	3	2	2	3	1	2
PO6	3	2	2	1	1	2	1	1	1	2	2	1
PO7	2	2	1	1	2	3	2	3	2	1	2	2
PO8	2	1	1	2	1	3	2	2	2	3	1	2
PO9	2	1	1	2	3	3	2	2	3	3	1	3

1- Slightly

2 - Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

Curriculum and Syllabus

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

CURRICULUM 2015

SEMESTER I

Code No.	Course Title	L	Т	Р	С	HRS
	-			-	-	
YPE 101	Applied Mathematics for Electrical Engineers	3	1	0	4	5
YPE 102	Analysis and Design of Inverters	3	1	0	4	5
YPE 103	Advanced Power Semiconductor Devices and Protection	3	0	1	4	5
YPE 104	Digital Simulation of Power Electronics Systems	3	0	1	4	5
YPE 105	Analysis of Power Converters	3	1	0	4	5
YPE ****	Elective – 1	3	0	0	3	3
		18	3	2	23	28

SEMESTER II

Code No.	Course Title	L	Т	Р	C	HRS
YPE 201	Analysis of Electrical Machines	3	0	0	3	5
YPE 202	Solid State AC Drives	3	1	0	4	5
YPE 203	Solid State DC Drives	3	0	1	4	5
YPE 204	Power Quality	3	1	0	4	5
YPE ****	Elective – II	3	0	0	3	3
YPE ****	Elective – III	3	0	0	3	3
YST 207	Communication Skills	1	0	1	2	3
YST 208	Mini Project (if YPE 204 option is core only)	0	0	1	1	2
		19	2	3	24	29

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee @pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

SEMESTER III

Code No.	Course Title	L	Т	Р	С	HRS
YPE 301	Project Work - Phase I	0	0	8	8	16
	MOOC-I *	0	0	0	0	0
	MOOC-II *	0	0	0	0	0
	•	0	0	8	8	16

* Non credit

SEMESTER IV

Code No.	Course Title	L	Τ	Р	С	HRS
VDE 401	Drainat Wark Dhasa U		0	15	15	20
YPE 401	Project Work - Phase II	0	0	15 15	15 15	30 30
		U	U	15	15	30

OVER ALL CREDITS =70

ELECTIVE GROUP - 1:

Code No.	Course Title	L	Т	Р	С	HRS
106A	Power Electronics for Renewable Energy Systems	3	0	0	3	3
106B	Microcontroller Based System Design	3	0	0	3	3
106C	System Theory	3	0	0	3	3
106D	Electro Magnetic Interferences and Harmonic Elimination	3	0	0	3	3
106E	Non-Linear Dynamics for Power Electronics Circuits	3	0	0	3	3

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

ELECTIVE GROUP - 2:

Code No.	Course Title	L	Т	Р	С	HRS
205A	Smart Grid	3	0	0	3	3
205B	Energy Auditing Conservation and Management	3	0	0	3	3
205C	Special Electrical Machines	3	0	0	3	3
205D	Static VAR Controllers and Harmonic Filtering	3	0	0	3	3
205E	Wind Energy Conversion Systems	3	0	0	3	3

ELECTIVE GROUP - 3:

Code No.	Course Title	L	Т	Р	С	HRS
206A	Soft Computing Techniques	3	0	0	3	3
206B	Flexible AC Transmission Systems	3	0	0	3	3
206C	Computer Aided Design of Electrical Machines	3	0	0	3	3
206D	Solar and Energy Storage Systems	3	0	0	3	3
206E	Application of MEMS Technology	3	0	0	3	3

Note:

- 1. HOD concerned has to provide options for selecting the relevant MOOC courses which are offered.
- 2. The credit distribution is followed as per the guidelines given by AICTE/UGC.

Course type		С	redi	its	Contact Hours				
Course type	L	Т	Р	Total	L	Т	Р	Total	
Lecture course	3	0	0	3	3	0	0	3	
Lecture + Practical course	3	0	1	4	3	0	2	5	
Lecture + Tutorial course	3	1	0	4	3	2	0	5	
	2	1	0	3	2	2 0		4	
Lecture + Tutorial + Practical course	3	1	1	5	3	2	2	7	

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Electrical Applied YPE Mathematics and Sub. **Course Code** Sub. Code Department 255 Electronics 101 Name for Electrical Engineering Engineers Max 2015 100 Ι 1 Regulation Year Semester Mark **MODE OF EVALUATION & WEIGHTAGE (%)** Hours/ Week Credit Т Р L **CA 1 CA 2 CA 3 CA 4** 4 Total 3 0 1 40% 10% 20% 30% 100% L = 45;T=15 Total = 60 hrs To develop the ability to apply the concepts of Matrix theory and Linear programming in Electrical Engineering problems. To achieve an understanding of the basic concepts **Objective** (s) of one dimensional random variables and apply in electrical engineering problems. To familiarize the students in calculus of variations and solve problems using Fourier transforms associated with engineering applications. MATRIX THEORY 12 hours **Unit - 1** The Cholesky decomposition - Generalized Eigen vectors, Canonical basis - QR factorization - Least squares method - Singular value decomposition **CALCULUS OF VARIATIONS Unit - 2** 12 hours Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables - Variational problems with moving boundaries - problems with constraints -Direct methods: Ritz and Kantorovich methods. **ONE DIMENSIONAL RANDOM VARIABLES** 12 hours Unit - 3 Random variables - Probability function - moments - moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a Random Variable. Unit - 4 LINEAR PROGRAMMING 12 hours Formulation - Graphical solution - Simplex method - Two phase method -Transportation and Assignment Models Unit - 5 FOURIER SERIES 12 hours Fourier Trigonometric series: Periodic function as power signals - Convergence of series - Even and odd function: cosine and sine series - Non-periodic function: Extension to other intervals - Power signals: Exponential Fourier series - Parseval's theorem and power spectrum - Eigen value problems and orthogonal functions - Regular Sturm-Liouville systems - Generalized Fourier series.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

Reference Books:	
1.	Richard Bronson, "Matrix Operation", Schaum's outline series, 2nd Edition, McGraw Hill, 2011.
2.	Gupta, A.S., Calculus of Variations with Applications, Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
3.	Oliver C. Ibe, "Fundamentals of Applied Probability and Random Processes, Academic Press, (An imprint of Elsevier), 2010.
4.	Taha, H.A., "Operations Research, An introduction", 10th edition, Pearson education, New Delhi, 2010.
5.	Andrews L.C. and Phillips R.L., Mathematical Techniques for Engineers and Scientists, Prentice Hall of India Pvt.Ltd., New Delhi, 2005.

	YPE101 – Applied Mathematics for Electrical Engineers
	Course Outcomes (COs)
At the	end of the course, the students will be able to
1.	Ability to provide the students with outstanding educational skills that will enable them to
	integrate undergraduate fundamentals with advanced knowledge to solve Complex power
	electronics problems
2	Ability to get the idea of antimization and the applications

- 2. Ability to get the idea of optimization and the applications
- 3. Ability to apply the optimization ideas to solve the functional.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Department	Electrical and Electronics Engineering	Course	Code	255	Sub. Code		YPE 102	Sub. Name	Analysis and Design of Inverters			
Year	Ι	Semes	ter	1	Regulation		Regulation		n 2015 Max Mark		100	
MODE OF H	I	Hou	rs/ We	ek	Credit							
CA 1	CA 2	CA 3	CA 4	Total	L 3		T	P 0	- 4			
40%	10%	20%	30%	100%	L =	= 45	; T		al = 60 hrs			
Objective (s)	Objective (s) To Provide the electrical circuit concepts behind the different working modes of inverters so as to enable deep understanding of their operation. To equip with required skills to derive the criteria for the design of power inverters for UPS, Drives etc., To give Ability to analyse and comprehend the various operating modes of different configurations of power inverters.											
Unit - 1	SINGLE PHASE INVERTERS 12 hours											
	Introduction to self commutated switches : MOSFET and IGBT - Principle of operation of half and full bridge inverters – Performance parameters – Voltage control of single phase inverters using various PWM techniques – various harmonic elimination techniques – forced commutated Thyristor inverters – Design of UPS											
Unit - 2	THREE PHA								09 hours			
	180 degree an – voltage cont modulation te	trol of three	phase in	verters:	single, mu	ulti j			connected loads space vector			
Unit - 3	CURRENT S				č				09 hours			
	Operation of six-step thyristor inverter – inverter operation modes – load – commutated inverters – Auto sequential current source inverter (ASCI) – current pulsations – comparison of current source inverter and voltage source inverters – PWM techniques for current source inverters.											
Unit - 4	MULTILEV								09 hours			
	- Comparison techniques for	Multilevel concept – diode clamped – flying capacitor – cascade type multilevel inverters - Comparison of multilevel inverters - application of multilevel inverters – PWM techniques for MLI – Single phase & Three phase Impedance source inverters .										
Unit - 5	RESONANT								06 hours			
	Piezoresistive applications,					icro	fluid	ics applic	ations, Medical			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

Reference Books:	
1.	Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004
2.	Jai P.Agrawal, "Power Electronics Systems", Pearson Education, Second Edition, 2002.
3.	Bimal K.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.
4.	Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Wiley India edition, 2006.
5.	P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003.

YPE102 – Analysis and Design of Inverters Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. **Design** their Inverter based on their requirement
- 2. Identify and Apply the various modes of inverters
- 3. **Analyse** the electrical circuit concepts behind the different working modes of inverters so as to enable deep understanding of their operation
- 4. **Analyse** and comprehend the various operating modes of different configurations of power converters

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical & Electro Engineering	Course Code	255	Sub. Code	YPE 103	Sub. Name	Advanced Power Semiconductor Devices and Protection					
Year	I		Semester	Ι	Regulation	2015	Max Mark	100				
MODE O	F EVALUATION &	WEIG	HTAGE (%)	Hours	s / Weel	š	Credit				
			CA4		L	Т	Р					
CA1	CA2	CA3	(End Sem)	Total	3	0	1	4				
15%	15%	20%	50%	100%	L = 45; T	= 0; P=	= 15;	Total = 60hrs				
Objective (s) applications. To understand the static and dynamic characteristics of current controlled power semiconductor devices understand the static and dynamic characteristics of voltage controlled power semiconductor devices To enable the students for the selection of devices for different power electronics applications To understand the control and firing circuit for different devices.												
Unit - 1	INTRODUCTION							09 hours				
Power handlin	ing devices overview ng capability ; Device - Types, switching ch	selectio	n strategy –	On-state								
Unit - 2	CURRENT CONT							09 hours				
BJT's - Construction, static characteristics, switching characteristics; Negative temperature co-efficient and secondary breakdown; Thyristors - Physical and electrical principle underlying operating mode, Two transistor analogy - concept of latching; Gate and switching characteristics; converter grade and inverter grade and other types; comparison of BJT and Thyristor - steady state and dynamic models of BJT & Thyristor. Unit - 3 VOLTAGE CONTROLLED DEVICES 09 hours Power MOSFETs and IGBTs - Principle of voltage controlled devices, construction, types, static and switching characteristics, steady state and dynamic models of MOSFET and IGBTs - Basics of GTO, MCT, FCT, RCT and IGCT. FCT, RCT and IGCT.												
Unit - 4	FIRING AND PRO	TECTI	NG CIRCU	ITS				09 hours				
	solation, pulse transfo wer BJT Over volta							IGBTs and base				
Unit - 5	THERMAL PROTI			-				09 hours				
Guidance for	 conduction, conve hear sink selection neat sink types and des 	– The	ermal resista	ance an								

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	M.D. Singh and K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.
2.	B.W Williams 'Power Electronics Circuit Devices and Applications.
3.	Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Wiley India edition, 2006.
Reference	
Books:	
1.	Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004.
2.	Mohan, Undeland and Robins, "Power Electronics – Concepts, applications and Design, John Wiley and Sons, Singapore, 2000.
3.	Bimal K.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.

-											
	YPE 103 - Advanced Power Semiconductor Devices and Protection										
	Course Outcomes (COs)										
At th	At the end of the course, the students will be able to										
1.	To know the various power semiconductor devices and its characteristics.										
2.	To use the thyristor models for industrial applications.										
3.	Understand the characteristics of current controlled devices.										
4.	Know the basic principle and operation of voltage controlled devices.										
5.	Realize the operation of firing and protection circuits.										

6. Able to **describe and analysis** of various power electronic circuit used in various applications

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Advanced Power Electrical & Electronics YPE Sub. Course 255 Sub. Code Semiconductor epartment Engineering Code 103 Name **Devices And** Protection Max Year Ι Semester Ι Regulation 2015 100 Mark **MODE OF EVALUATION & WEIGHTAGE (%)** Credit Hours/ Week Т Р Total L Р Total L Т CIA 1 CIA₂ **EA 1 EA 2** Total 3 4 3 0 2 5 0 1 30% L = 45; T = 0; P = 15;30% 20% 100% Total = 60 hrs20% Objective To provide better understanding of power electronics devices Characteristics and converter **(s)** performance for various loads POWER ELECTRONICS DEVICES AND CIRCUITS LABORATORY

Name of the Experiments:

- 1. Switching characteristics of SCR.
- 2. Switching characteristics of TRIAC.
- 3. Switching characteristics of MOSFET.
- 4. Switching characteristics of IGBT.
- 5. Single phase semi converter with R-L and R-L-E (Motor)loads
- 6. Single phase full converter with R-L and R-L-E (Motor) loads.
- 7. MOSFET/ IGBT based Choppers.

YPE 103 Power Electronics Devices And Circuits Laboratory Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. Understand I-V Characteristics Power semiconductor devices.
- 2. Analyse the various types of firing schemes.
- 3. Able to Know the converter performance for various types of loads
- 4. Analyse and design DC / DC converter circuits.
- 5. Able to Know about the PWM circuit.
- 6. Learn the performance of single and three phase converter .

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Email:	headeee@pmu.edu	Web: www. pmu.edu Under Sec. 3 of UGC NAAC ACCREDITE										
Department	Electrical and Electronics Engineering	Course Code		255	Sub. Code		PE 04	Sub. Name	Digital Simulation of Power Electronic Systems			
Year	Ι	Semester I			Regulation		2015 Max Mark		100			
MODE OF H	EVALUATION	N & WEIG	HTAGI	E(%)]	Hours/	Weeł	κ.	Credit			
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0		P 1	4			
15%	15%	20%	50%	100%	L = 45	; $T = 0$; P =	= 30;	Total = 75 hrs			
Objective (s)	This course prepares students to work professionally in the area of power and power related fields. Students should be able to apply knowledge of mathematics and engineering, and identify numerical models to solve power and power electronics engineering problems.											
Unit - 1	INTRODUC	TION							09 hours			
	Principal of modelling power semiconductor devices – Macro models versus micro models – Thyristor model – Semiconductor device modelled as R,RL and RLC combinations – Systematic model of formulating State Equations-Computer Solution of State Equations – Explicit Integration Method – Implicit Integration Method.											
Unit - 2	PSPICE					-			09 hours			
	models – Tl combinations State Equation	hyristor mo – Systemat ns – Explici	del – tic mode t Integra	Semicor el of for	nductor d mulating	levice 1 State E	node quati	lled as l ons-Comp				
Unit - 3	MATLAB ar					-			09 hours			
									TLAB – Model ing S - Functions			
Unit - 4	SIMULATIO	ON USING	PSPIC	E, MAT	LAB and	SIMU	LINF	K	09 hours			
	inverters – V current switch	oltage source	ce and c to voltag	urrent so	ource inve	erters -			hoppers – PWM e inverters -Zero			
Unit - 5	SIMULATIO					P		6.100	09 hours			
	fed DC motor	1							notors – Chopper inverter.			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fmail: headeee @pmu.edu

 Web: www. pmu.edu

Text Books:								
1.	V. Rajagopalan, "Computer Aided Analysis of Power Electronic Systems" – CRC Press, 1987.							
2.	M. H. Rashid, "Introduction to PSpice using OrCAD for circuits and electronics",							
	Pearson/Prentice Hall, 2004.							
Reference								
Books:								
1	E. Ramshaw, D. C, Schuuram, "PSpice Simulation of Power Electronics Circuits - An							
1.	introductory Guide", Springer, New York, 1996.							
2.	Chee-Mun Ong, "Dynamic Simulation of Electric Machinery: Using MATLAB/							
2.	Simulink", Prentice Hall, New Jersey, 1998.							
2	Ned Mohan, "Power Electronics: Computer Simulation Analysis and Education using							
3.	PSPICE", Minnesota Power Electronics Research and Education, USA, 1992.							
4.	Simulink Reference Manual, Math works, USA.							
5.	"The PSpice User's Guide", Microsim Corporation, California, 1996.							

YPE104 –Digital Simulation of Power Electronic Systems Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. To **formulate** state equations and solve state equations by explicit and implicit integration method.
- 2. To **know** the SPICE models of power electronic devices such as power diode, thyristor, BJT, MOSFET, IGBT.
- 3. To **know** programming and file processing, model analysis aspect of MATLAB/SIMULINK.
- 4. Able to **describe and analysis** of various power electronic circuits using PSPICE
- 5. Able to describe and analysis of various power electronic circuit using MATLAB/SIMULINK.
- 6. To develop Simulation model for DC and AC drives in MATLAB/SIMULINK environment.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical and Electronics Engineering		Course Code	255	Sub. Code		YPE	YPE104		ub. ame	Digital Simulation of Power Electronic Systems		on of er onic		
Year		I	Semester	Ι	Regulation		20	115		lax ark	100				
MODE OF E	EVALUA	TION & Y	WEIGHTAC	GE (%)	Credit Hours/ Week										
CIA 1	CIA 2	EA 1	EA 2	Total	L	Т	P	Total L		L	Т	P	Total		
		LA I		Total	3	0	1	4	Ļ	3	0	2	5		
30%	30%	20%	20%	100%	L	= 45;	T = 0;	T = 0; P = 3			30; Total = 75hrs				
Objective (s)	Objective To provide better understanding of power electronics system through digital simulation														

POWER ELECTRONICS SIMULATION LABORATORY

Name of the Experiments:

- 1. Simulation of Single phase semi converter with R, RL and RLE loads.
- 2. Simulation of Single phase full-converter with R, RL and RLE loads.
- 3. Simulation of three phase Semi and Full converter.
- 4. Simulation of MOSFET, IGBT based CLASS A, B, C, D, E Choppers.
- 5. Simulation of Single Phase dual converter fed R, RL and RLE loads.
- 6. Simulation of single phase IGBT based PWM inverter.
- 7. Simulation of single phase semi converter fed DC drives.
- 8. Simulation of three phase semi converter fed DC drives.
- 9. Simulation of single phase full converter fed DC drives
- 10. Simulation of closed loop control of chopper fed DC motor.
- 11. Simulation of single phase AC voltage controller fed AC drives

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

YPE104 Power Electronics Simulation Laboratory Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. Understand basic operation of various power semiconductor devices and passive components.
- 2. Understand the basic principle of switching circuits.
- 3. Analyse and design an AC/DC rectifier circuit.
- 4. Analyse and design DC/DC converter circuits.
- 5. Analyse DC/AC inverter circuit.
- 6. **Learn** the requirements imposed by electric drives (dc and ac) on converters and **synthesize** these converters using the building block approach.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical and Electronics Engineering	Course	Code	255	Sub. Coo	le	YPE 105	Sub. Name	Analysis of Power Converters			
Year	Ι	Semes		1	Regulatio	on	2015	Max Mark	100			
MODE OF F	EVALUATION	N & WEIG	HTAGI	E(%)	H	our	s/ Wee	k	Credit			
CA 1	CA 2	CA 3	CA 4	Total	L		T	P	4			
400/	100/	200/	200/	1000/	3	4	1	$\begin{bmatrix} 0 \\ 15 \end{bmatrix} = 1$				
40%	10%	20%	30%	100%		= 4	/		al = 60 hrs g modes of power			
Objective (s)	starting fromTo analyze power converTo design	 To equip with required skills to derive the criteria for the design of power converters starting from basic fundamentals. To analyze and comprehend the various operating modes of different configurations of power converters. To design different power converters namely AC to DC, DC to DC and AC to AC converters. 										
Unit - 1		SINGLE PHASE AC-DC CONVERTER 09 hours										
	converters w discontinuous	with R-L, modes of parameters:	R-L-E operatio harmoi	loads a n - inve nics, rip	nd free rter operation ple, distor	whe ion tion	eeling –Seque 1, powe	diodes – ence contr er factor -	nd fully controlled continuous and rol of converters – effect of source ircuits			
Unit - 2	THREE PHA	ASE AC-DO	C CONV	VERTE	R				09 hours			
		tion and its	limit – J						wheeling diodes – ce impedance and			
Unit - 3	DC-DC CON	VERTERS	5						09 hours			
	inverters – A comparison o	Operation of six-step thyristor inverter – inverter operation modes – load – commutated inverters – Auto sequential current source inverter (ASCI) – current pulsations – comparison of current source inverter and voltage source inverters – PWM techniques for current source inverters.										
Unit - 4	AC VOLTA	GE CONTI	ROLLE	RS					09 hours			
	Static Charac controllers –			-	-				se and three phase			
Unit - 5	CYCLOCO	VERTER	S						09 hours			
	-	-			-				- Single phase and atrix converters.			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

Reference Books:	
1.	Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004
2.	Jai P.Agrawal, "Power Electronics Systems", Pearson Education, Second Edition, 2002.
3.	Power Electronics by Vedam Subramanyam, New Age International publishers, New Delhi Second Edition, 2006
4.	Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Wiley India edition, 2006.
5.	P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003.

YPE105 – Analysis of Power Converters Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. review knowledge about fundamental concepts and techniques used in power electronics.
- 2. **analyze** various single phase and three phase power converter circuits and understand their applications.
- 3. **identify** basic requirements for power electronics based design application
- 4. understand the use of power converters in commercial and industrial applications

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	-	2	-	-	1	-	-	1
CO2	1	2	1	3	1	-	-	-	2
CO3	-	-	2	-	-	1	2	-	1
CO4	1	1	2	2	1	-	-	-	2

YPE101 – Applied Mathematics for Electrical Engineers

1-Slightly

2 – Supportive

3 – Highly related

YPE102 – Analysis and Design of Inverters

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	-	2	-	-	1	-	-	1
CO2	1	2	1	3	1	-	-	-	2
CO3	-	-	2	-	-	1	2	-	1
CO4	1	1	2	2	1	_	-	-	2

1-Slightly

2 – Supportive

3 – Highly related

YPE 103 Advanced Power Semiconductor Devices And Protection (Theory)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	3	1	1	2	-	-	-	-
CO2	2	2	2	2	2	-	-	-	1
CO3	3	3	3	2	2	-	-	-	1
CO4	2	3	2	2	1	-	-	-	-
CO5	2	2	2	3	3	-	-	-	1
CO6	2	1	2	3	2	-	-	-	-

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

YPE 103 – Advanced Power Semiconductor Devices and Protection (Lab)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	3	-	-	2	-	-	-	-
CO2	1	3	-	2	-	-	-	-	-
CO3	1	2	-	3	-	-	-	-	-
CO4	1	3	-	-	-	-	-	-	-
CO5	3	1	-	-	2	-	-	-	-
CO6	2	3	-	-	1	-	-	-	-
CO7	3	2	-	-	2	-	-	-	-
Slightly 2 – Supportive								3 – H	ighlyı

YPE 104 – Digital Simulation of Power Electronics System (Theory)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	3	1	1	2	-	-	-	-
CO2	2	3	2	2	2	-	-	-	1
CO3	2	3	3	2	2	-	-	-	1
CO4	2	3	2	2	3	-	-	-	-
CO5	2	2	2	3	3	-	-	-	1
CO6	2	3	2	3	2	-	-	-	-
CO7	2	2	3	3	2	-	-	-	-
CO8	1	2	2	2	2	-	-	-	-

1- Slightly

2 – Supportive

3 – Highly related

YPE 104 – Digital Simulation Power Electronics System (Lab)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	3	-	-	2	-	-	-	-
CO2	1	3	-	2	-	-	-	-	-
CO3	2	2	-	3	-	-	-	-	-
CO4	1	3	-	-	-	-	-	-	-
CO5	3	2	-	-	2	-	-	-	-
CO6	2	3	-	-	1	-	-	-	-
CO7	3	2	-	-	2	-	-	-	-

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

YPE105 – Analysis of Power Converters

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	-	2	-	-	-	-	-	-
CO2	1	2	1	3	1	-	-	-	2
CO3	-	-	-	-	-	1	2	-	1
CO4	1	1	2	2	1	-	-	-	2

1- Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fmail: headeee@pmu.edu

 Web: www. pmu.edu

Department	Elect ar Electr Engin	nd	Course Code	255	Sub.	Code	YPE 203	Sub. Name	Solid State DC Drives
Year]	[Semester	II	Regulation2015MaMaMa				100
	E OF E VEIGH		ATION & (%)			Hours		Credit	
CA1	CA2	CA3	CA4 (End Sem)	Total	L 3	T 0		P 1	4
40%	10%	20%	30%	100%	L = 4	5; T = (); $P=3$	0; T	otal = 75 hrs
Objective (s)To understand steady state operation and transient dynamics of a motor load system To study and analyze the operation of the converter / chopper fed DC drive, both qualitatively and quantitatively. To analyze and design the current and speed controllers for a closed loop solid state DC motor drive. To understand the implementation of control algorithms using microcontrollers and phase locked loop.									
Unit - 1	DC N SYST		RS FUND	AMEN	TALS A	AND M	ECHA	NICAL	09 hours
Introduction to Characteristic	o high s s of me of driv	peed di chanica ves cha	rives and mo il system – c racteristics	odern dri lynamic - stabili	ives. equation ty of dri	is, comp ves – n	onents	of torque	ver operation - , types of load; peration; Drive
Unit - 2						-8:			09 hours
Unit - 2CONVERTER CONTROL09 hoursPrinciple of phase control – Fundamental relations; Analysis of series and separately excited DC motor with single-phase and three-phase converters – waveforms, performance parameters, performance characteristics.09 hoursContinuous and discontinuous armature current operations; Current ripple and its effect on performance; Operation with free wheeling diode; Implementation of braking schemes; Drive employing dual converter.09 hours									
Unit - 3	CHO	PPER (CONTROL						09 hours
controlled D	Introduction to time ratio control and frequency modulation; Class A, B, C, D and E chopper controlled DC motor – performance analysis, multi-quadrant control - Chopper based implementation of braking schemes; Multi-phase chopper; Related problems								
Unit - 4	CLOS	SED LO	DOP CONT	ROL					09 hours
Modeling of drive elements – Equivalent circuit, transfer function of self, separately excited DC motors; Linear Transfer function model of power converters; Sensing and feeds back elements - Closed loop speed control – current and speed loops, P, PI and PID controllers – response comparison. Simulation of converter and chopper fed d.c drive.									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Unit - 5	DIGITAL CONTROL OF D.C DRIVE 09 hours
Phase Locked	Loop and micro-computer control of DC drives – Program flow chart for constant
horse power a	nd load disturbed operations; Speed detection and current sensing circuits.
Text Books:	
1.	Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall Inc., New Yersy, 1989.
2.	R.Krishnan, "Electric Motor Drives – Modeling, Analysis and Control", Prentice- Hall of India Pvt. Ltd., New Delhi, 2010.
Reference Books:	
1.	Gobal K.Dubey, "Fundamentals of Electrical Drives", Narosal Publishing House, New Delhi, Second Edition, 2009.
2.	Vedam Subramanyam, "Electric Drives – Concepts and Applications", Tata McGraw-Hill publishing company Ltd., New Delhi, 2002.
3.	P.C Sen "Thyristor DC Drives", John wiely and sons, New York, 1981.

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956 NAAC ACCREDITED

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	ar Electr	trical nd conics eering	Course Code	255	Sub.	Code	YPE 203	Sub. Name	Solid State DC Drives		
Year		[Semester	II	Regu	Regulation 2015		Regulation		Max Mark	100
MOD V			Hours	Credit							
			CA4		L	Т		Р			
CA1	CA2	CA3	(End Sem)	Total	3	0		1	4		
40%	10%	20%	30%	100%	L = 4	5; $T = 0$); P = 3	0; T	otal = 75 hrs		
Objective (s)	ObjectiveTo understand steady state operation and transient dynamics of a motor load system To study and analyze the operation of the converter / chopper fed DC drive, both										

POWER ELECTRONICS DRIVES LABORATORY

LIST OF EXPERIMENTS

- 1. Single phase semi- converter fed DC drive.
- 2. Single phase full converter fed DC drive
- 3. Three phase Half controlled rectifier fed dc drive
- 4. Three phase fully controlled rectifier fed dc drive.
- 5. Chopper fed DC drives.
- 6. Speed control of three-phase induction motor using PWM inverter.
- 7. DSP based closed loop drive for induction motor
- 8. DSP based Speed control of Brush Less DC motor.
- 9. DSP based Switched Reluctance Motor Drive.
- 10. Three phase AC voltage controller fed AC Drive
- 11. Mini Projects (Related above Experiments)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

YPE 203 - Solid State DC Drives **Course Outcomes (COs)**

At the end of the course, the students will be able to

1. Know the basic concept of steady state operation and transient dynamics of a motor load

system

- 2. Design, Analyze and operate with various controlled rectifier fed DC drive.
- 3. Design, Analyze and operate with various chopper fed DC drive
- 4. Analyze and Design the current and speed controllers for a closed loop solid state DC motor drives.
- Design, Analyze and operate with inverter fed induction motor drives. 5.
- 6. Generate the gating pulses using micro controller and FPGA
- 7. Analyze the speed control of Stepper motor, BLDC motor and SRM.
- 8. Design, simulate and analyze the closed loop control of converter and chopper fed dc drives.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Electrical & YPE Sub. 255 Sub. Code Electronics **Course Code Power Quality** 204 Department Name Engineering Max Regulation 2015 100 Year Ι Semester Π Mark **MODE OF EVALUATION & WEIGHTAGE (%)** Hours/ Week Credit L Т Р Total L Т Р Total **CA 2 CA 3 CA 1 CA 4** Total 3 0 0 3 0 3 0 3 L = 45; T = 0; P = 0;15% 15% 20% 50% 100% Total = 45 hrsTo impart the Basic knowledge of Power quality issues. To understand the idea about **Objective** (s) voltage sag. To understand the analysis in harmonics. To describe the fundamentals of filtering. To know about the power factor. To understand the power quality monitoring. **INTRODUCTION** 09 hours **Unit - 1** Definition of Electric Power Quality- Description of poor power quality events. Power Quality phenomena – Basic terminologies – various events in Power Quality – Causes for reduction in Power Quality — Power Quality Standards and power quality strategy. Unit - 2 **VOLTAGE SAG** 09 hours Sources of sags – estimating voltage sag performance, sag severities – voltage sag due to induction motor starting - mitigation of voltage sags - effect on adjustable AC Drives, DC drives, computers and consumer electronics. Unit - 3 HARMONICS **09** hours Harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics - Harmonics Vs transients. Effect of harmonics evaluation of Harmonic distortion - devices for controlling harmonic distortion. Unit - 4 FILTERING AND POWER FACTOR IMPROVEMENT **09** hours Power factor improvement- Passive Compensation. Passive Filtering Active Harmonic Filtering-Shunt Injection Filter for single phase, three-phase three-wire and three-phase four-wire systems static VAR compensators-SVC and STATCOM. Unit - 5 **POWER QUALITY MONITORING 09** hours Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer - Quality measurement equipment - harmonic / flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.WayneBeaty, "Electrical Power Systems Quality" McGraw Hill,2003
2.	C. Sankaran, "Power Quality" CRC Press.
3.	Alexander Kusko "Power Quality in Electrical Systems" The McGraw-Hill Companies, Inc.
4.	Ewald F. Fuchs and Mohammad A.S. Masoum" Power Quality in Power Systems and Electrical Machines"
Reference	
Books:	
1.	Silvester and Ferrari, "Finite for Electrical Engineers", Cambridge University Press, 1983
2.	S.R.H.Hoole, Computer – Aided, Analysis and Design of Electromagnetic Devices, Elsevier, New York, Amsterdam, London, 1989
3.	D.A.Lowther and P.P Silvester, "Computer Aided Design in Magnetics", Springer Verlag, New York, 1956
4.	S.J Salon, "Finite Element Analysis of Electrical Machines", Kluwer Academic Publishers, London, 1995

YPE 204 – Power Quality Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. Understand the fundamentals and working principle of power quality.
- 2. Use the measuring instruments to **measure** the electrical parameters **Record** the harmonics value in harmonics.
- 3. **Indentify** the various types of filters.
- Gain the knowledge in the measuring instruments and analyze the various power quality Monitoring systems.
- 5. **Compare** the power quality strategy.
- 6. Analysis power line disturbance.
- 7. Collect the various power quality problems

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

YPE203 – Solid State DC Drives

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	-	2	-	-	1	-	-	1
CO2	1	2	1	3	1	-	-	-	2
CO3	-	-	2	-	-	1	2	-	1
CO4	1	1	2	2	1	-	-	-	2
CO5	1	-	2	-	-	1	-	-	1
CO6	1	2	1	3	1	-	-	-	2
CO7	-	-	2	-	-	1	2	-	1
CO8	1	1	2	2	1	-	-	-	2

1-Slightly

2 – Supportive

3 – Highly related

YPE204 – Power Quality

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	-	2	-	-	1	-	-	1
CO2	1	2	1	3	1	-	-	-	2
CO3	-	-	2	-	-	1	2	-	1
CO4	1	1	2	2	1	-	-	-	2
CO5	1	-	2	-	-	1	-	-	1
CO6	1	2	1	3	1	-	-	-	2
CO7	-	_	2	-	-	1	2	-	1

1- Slightly

2-Supportive

Phone: + 91 - 4362 - 264600

Email: headeee@pmu.edu

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Fax: + 91- 4362 - 264660 Web: www. pmu.edu

Department	Electrical & Electronics Engineering	Course	Code	255	Sub	Sub. Code YPE Sub. 106A Name			Power Electronics for Renewable Energy Systems					
Year	Ι	Semes		er Regulation 2015					lax ark	100				
MODE OF H	EVALUATION	N & WEIG	HTAGE	E(%)		Cı	red	lit		H	Hours/ Week			
CA 1	CA 2	CA 3	CA 4	Total	L 3			P Tot : 0 3	al	L 3	Т 0	P	Total 3	
15%	15%	20%	50%	100%	L =	-		= 00; P = 00			Tot	al =	45 hrs	
Objective (s)	To Provide knowledge about the standalone and grid connected renewable energy systems. To equip with required skills to derive the criteria for the design of power converters for renewable energy applications. To analyze and comprehend the various operating modes of wind electrical generators and solar energy systems													
Unit- 1	INTRODUC	TION										10 ł	nours	
	Trends in energy consumption - World energy scenario - Energy source and their availability – Conventional and renewable sources - Need to develop new energy technologies- MNRE Rules and Regulations-TEDA-Wind and solar survey in India and World.													
Unit- 2	ELECTRICALMACHINESFOR RENEWABLEENERGYCONVERSION08 hours									nours				
	Review of reference theory fundamentals-principle of operation and analysis: Induction Generator (IG), Permanent Magnet Synchronous Generator (PMSG), squirrel cage induction generator (SCIG) and Doubly Fed Induction Generator (DFIG).													
Unit- 3	POWER CONVERTERS								10 ł	nours				
	Solar: Block diagram of solar photo voltaic system, line commutated converters (inversion-mode) -Maximum power point tracking – Applications – Water pumping – Street lighting, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters, Grid Interactive Inverters-matrix converters.													
Unit- 4	ANALYSISOFWINDAND PVSYSTEMS 08 hours													
	Standaloneoperationoffixedandvariablespeedwindenergyconversionsystemsand solar energy conversion system based on PV system -Inter connections with Grid - Power conditioning schemes.													
Unit- 5	HYBRID RE	NEWABL	EENER	GYSYS	STEM	S						09 ł	nours	
	Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV- Power converters for distributed power systems- Storage - Reliability evolution							ind-PV-						

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	S. Rao and Parulekar, Energy Technology – Non Conventional, Renewable and Conventional, New Delhi, Khanna Publishers, 1999.
2.	Mukund R. Patel, Wind and Solar Power System, New York, CRC Press LLC, 1999.
3.	Ned Mohan, Tore M. Undeland and William P.Robbins, Power Electronics: Converters, Applications and Design, New Jersey, John Wiley and Sons, 2003.
4.	S.N.Bhadra,D.Kastha,&S.Banerjee "Wind Electrical Systems ",OxfordUniversity Press,2009
Reference Books:	
1.	Rashid. M.H "power Electronics Handbook", Academicpress, 2001.
2.	Rai. G.D," Nonconventional Energy Sources", Khanna publishes, 1993
3.	Gray, L.Johnson, "Wind energy system", prentice hall linc, 1995.
4.	Non-conventional Energy sources B.H. Khan Tata McGraw-hill Publishing Company, New Delhi.

YPE 106A – Power Electronics for Renewable Energy Systems Course Outcomes (COs)

At the end of the course, the students will be able to

- 1. Understand the fundamentals of renewable energy systems.
- 2. Explained the operation of various electrical machines for renewable energy conversion.
- 3. Analyze the different power conversion systems employed in renewable energy.
- 4. **Review** the Grid connected solar and wind power generation systems.
- 5. Identify the DC / AC converters employed for hybrid energy systems.

Gain the knowledge about the controllers **design** for hybrid systems.

6. **Discuss** the hybrid renewable energy systems.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

Department	Electrical & Electronics Engineering	Course	Code	255	Sub.	Code	YI 10		Su Nai			ased	ontroller System sign	
Year	Ι	Semes	ter	Ι	Regulation2015Max Mark					100				
MODE OF I	EVALUATION	ALUATION & WEIGHTAGE (%) Credit									Hours/ Week			
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P 0	To 3		L 3	T	P	Total 3	
40%	10%	20%	30%	100%	L	= 45;	T =	0; P	e = 0;	-	Tota	al = 4	15 Hrs	
Objective (s)	teach I/O a Microcontrol	To expose the students to the fundamentals of microcontroller based system design. To teach I/O and RTOS role on microcontroller. To impart knowledge on PIC Microcontroller based system design. To introduce Microchip PIC 8 bit peripheral system Design. To give case study experiences for microcontroller based applications.												
Unit - 1	8051 ARCHITECTURE										09	hours		
	Architecture – memory organization – addressing modes – instruction set – Timers - Interrupts - I/O ports, Interfacing I/O Devices – Serial Communication.													
Unit - 2	8051 PROGRAMMING 09 hours													
	Instructions - Programming	Assembly language programming – Arithmetic Instructions – Logical Instructions – Single bit Instructions – Timer Counter Programming – Serial Communication Programming Interrupt Programming – RTOS for 8051 – RTOS Lite – Full RTOS – Task creation and run – LCD digital clock/thermometer using Full RTOS.												
Unit - 3	PIC MICRO	CONTRO	LLER								09 hours			
	in Assembly	Architecture – memory organization – addressing modes – instruction set – PIC programming in Assembly & C –I/O port, Data Conversion, RAM & ROM Allocation, Timer programming, MP-LAB IDE.												
Unit - 4	PERIPHER	AL OF PIC	MICRO	OCONT	ROLL	ER						09	hours	
	Timers – Inte Sensor Interfa	1 · 1					UAR	Г- CC	CP m	nodul	es -A	ADC,	DAC and	
Unit - 5	SYSTEM D	ESIGN – CA	ASE ST	UDY								09	hours	
	Interfacing L Inverters - M Stand alone I	lotor Contro	ol – Con	trolling										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Reference Books:	
1.	Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey ' PIC Microcontroller and
1.	Embedded Systems using Assembly and C for PIC18', Pearson Education 2008
2.	John Iovine, 'PIC Microcontroller Project Book ', McGraw Hill 2000.
3.	Myke Predko, "Programming and customizing the 8051 microcontroller", Tata McGraw Hill
5.	2001.
4.	Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, 'The 8051
4.	Microcontroller and Embedded Systems' Prentice Hall, 2005.
5.	Rajkamal, "Microcontrollers-Architecture, Programming, Interfacing & System Design", 2ed,
5.	Pearson, 2012.
6	I Scott Mackenzie and Raphael C.W. Phan, "The Micro controller", Pearson, Fourth edition
6.	2012.

YPE106B Microcontroller Based System Design Course Outcomes (COs)

At the end of the course, the students will be able to

1. Define and differentiate between microprocessor and microcontroller.

2. **Discuss** the various types of peripheral located in the Embedded controllers.

3. Understand the concept of Interfacing of various systems.

4. Develope a controller model for the different electrical systems automation application.

5. **Design** & verification of Standalone Systems.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical and Electronics Engineering	Course (Code	255	Nub Codo		YPE 1060		System Theory	
Year	Ι	Semes	ter	Ι	Regulation 201			5 Max Mark	100	
MODE OF	MODE OF EVALUATION & WEIGHTAGE (%)Hours/ Week								Credit	
CA 1	CA 2	CA 3	CA 4	Total	L		T	P	3	
40%	10%	20%	30%	100%	$\frac{3}{\mathbf{L} = 45}$		0 = 0 :	0 = 0; T	otal = 45 hrs	
Objective (s)										
Unit - 1	STATE VARIABLE REPRESENTATION								09 hours	
Unit - 2	Introduction-Concept of State-State equation for Dynamic Systems -Time invariance and linearity- Non uniqueness of state model-State Diagrams - Physical System and State Assignment. SOLUTION OF STATE EQUATIONS 09 hours Existence and uniqueness of solutions to Continuous-time state equations-Solution of Nonlinear and Linear Time Varying State equations-Evaluation of matrix exponential-System modes- Role of Eigenvalues and Eigenvectors, Discrete time state equations- Jordan canonical form									
Unit - 3	CONTROLLA	ABILITY A	ND OBS	SERVAI	BILITY				09 hours	
	•		•		•			•	Continuous time acibility-System	
Unit - 4	STABILTY								09 hours	
Unit - 5	of LTI Systems The Direct Me Finding Lyapu Krasovskii and SISO and MIN Introduction-Ce Effect of State	s-Equilibriur ethod of Lya unov Functi Variable-Gr MO Systems ontrollable a e Feedback	n Stabili apunov a ons for radiant M on Obse on Con	ity of No and the Nonlin <u>Aethod.</u> rvable C trollabili	onlinear Co Linear Cont ear Cont ompanion ty and O	ontin ontinu inuo	uous uous-T us Ti ms-SI vabili	Time Autono Time Autono Time Autono SO and MIM ty-Pole Plac	tability-Stability omous Systems- omous Systems- mous Systems- 09 hours IO Systems-The ement by State	
	Feedback for b									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	M. Goal, 'Digital Control and State Variable Methods', Tata McGraw-Hill, 1997.
2.	John S. Bay, "Fundamentals of Linear State Space Systems", McGraw-Hill, 1999.
3.	Benjamin C. Kuo, "Digital Control Systems". Oxford University Press, 1992.
4.	D. Roy Choudhury, "Modern Control Systems", New Age International, 2005.
Reference Books:	
1.	R.C.Dorf and R.H.Bishop, 'Modern Control Systems', Addison-Wesley, 1995. (MATLAB Reference)
2.	Nagrath, I.J. and Gopal, M., 'Control System Engineering', Wiley Eastern, Reprint 1995
3.	K. Ogata, "Modern Control Engineering" 2 nd Edition, Prentice Hall India, New Delhi, 1992.
4.	A. Johnson and H. Moradi, New Identifications and Design Methods, Springer -Verlag, 2005.

YPE 106C System Theroy Course Outcomes (COs)

At the end of the course, the students will be able to

1. Define and differentiation between linear and nonlinear control systems.

- 2. **Develope** a mathematical model for the different mechanical, electrical and electromechanical
- 3. Discuss of Lyapunov BIBO Stability, Krasovskii and Variable-Gradiant Method.
- 4. **Understand** of optical and adaptive control systems & also verification of controllability and observability of control Systems.
- 5. Design & verification of compensated circuits/systems for uncompensated circuits/systems

Department	ar Electr	trical nd ronics eering	Course Code	255	Sub. Code	YPE 106D	Sub. Name	Electro Magnetic Interferences and Harmonic Elimination	
Year		I	Semester	Ι	Regulation	2015	Max Mark	100	
MODE OF E	C OF EVALUATION & WEIGHTAGE (%)				Hou	rs / Weel	ζ.	Credit	
			CA4		L	Т	Р		
CA1	CA2	CA3	(End Sem)	Total	3	0	0	3	
40%	10%	20%	30%	100%	L = 45; T	= 00; P=	= 0;	Total = 45 hrs	
Objective (s)	To get the knowledge about Electro Magnetic Interferences and Harmonic Elimination. To get in-depth idea about EMI Measurements, Power system Harmonics, Harmonic Elimination and sources of harmonics.								
Unit - 1	INTR	INTRODUCTION 09 hours							
	Introduction Sources of EMI- EMI and EMC with examples- Classification of EMI/EMC - power quality - voltage quality - overview of power quality phenomena - classification of power quality issues - power quality measures and standards-THD-TIF-DIN-C-message weights-flicker factor-transient phenomena-occurrence of power quality problems-power acceptability curves-IEEE guides, standards and recommended practices.								
Unit - 2		TROMA SUREN	AGNETIC IENTS	IN	TERFERE	RS	AND	09 hours	
	CE, RE, CS, RS, Units of Parameters, Sources of EMI, EMI coupling modes - CM and DM, ESD Phenomena and effects, Transient phenomena and suppression. Basic principles of RE, CE, RS and CS measurements, EMI measuring instruments- Antennas, LISN, Feed through capacitor, current probe, EMC analyzer and detection technique open area site, shielded anechoic chamber, TEM cell.								
Unit - 3	POW	ER SYS	STEM HAR	MONIC	S			09 hours	
	wavef Three distort	orm-trip phase ion of	olex harmor power co	nics-impo onverters lamps-ef	ortant harmo -arcing dev	nic intro ices-satur	ducing able de	of a harmonic devices-SMPS- evices-harmonic onics on power	

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Unit - 4	HARMONICS ELIMINATION	09 hours
	Passive Harmonic Filtering. Single Phase Shunt Current Injection its Control, Three Phase Three-wire Shunt Active Filtering an using p-q theory and d-q modelling. Three-phase four-wire shun Hybrid Filtering using Shunt Active Filters. Series Active Filterin Cancellation Mode.	d their control nt active filters.
Unit - 5	SOURCES AND EFFECTS OF HARMANICS	09 hours
	Current Harmonics - Sources of Harmonics in Distribution S Effects, Series Active Filtering in Harmonic Cancellation Mode Filtering in Harmonic Isolation Mode . Dynamic Voltage Restorer . Power Quality Conditioner.	e. Series Active
Text Books:		
1.	Prasad Kodali.V, "Engineering Electromagnetic Compatibility", S New Delhi 2000.	S. Chand & Co,
2.	Clayton R. Paul, "Introduction to Electromagnetic compatibility" 1992	, Wiley & Sons
Reference Books:		
1.	Reactive Power Control in Electric Systems by T.J.E Miller	
2.	Understanding FACTS Concepts and Technology of Flexible Ad Systems by N.G. Hingorani & L. Gyugyi IEEE Press, 2000.	C Transmission
3.	Electric Power Quality by G.T.Heydt	
4.	Understanding Power Quality Problems by Math H. Bollen J.A. System Quality Assessment., John wiley, 2000	rrillaga, .Power

YPE 106D – Electro Magnetic Interferences and Harmonic Elimination Course Outcomes (COs)

- 1. Learn and **understand** the sources of power quality issues and its results.
- 2. Use the measuring techniques to **measure** the various EMIs.
- 3. **Discuss** and distinguish the various Power system harmonics.
- 4. Analyze the harmonics and design the concern filters.
- 5. **Understand** the sources of harmonics and leading to justify its effects

Department	Electrical and Electronics Engineering	Course Code		255	Sub. Code		YPE 106E	Sub. Name	Non Linear Dynamics for Power Electronic Circuits
Year	Ι	Seme	ster	Ι	Regula	ation	2015	Max Mark	100
MODE OF I	EVALUATION	VALUATION & WEIGHTAGE (%) Hours/ Week							Credit
CA 1	CA 2	CA 3	CA 4	Total	L 3		Γ 0	P 0	3
40%	10%	20%	30%	100%	L =	45; T	' = 0; I	P = 0;	Total = 45 hrs
Objective (s)	 To understand the non linear behavior of power electronic converters. To understand the techniques for investigation on non linear behavior of power electronic converters. To analyse the non linear phenomena in DC to DC converters. To analyse the non linear phenomena in AC and DC Drives. To introduce the control techniques for control of non linear behavior in power electronic systems. 								
Unit – 1	BASICS OF 1	09 hours							
	Basics of Nonlinear Dynamics: System, state and state space model, Vector field- Modeling of Linear, nonlinear and Linearized systems, Attractors, chaos, Poincare map, Dynamics of Discrete time system, Lyapunov Exponent, Bifurcations, Bifurcations of smooth map, Bifurcations in piece wise smooth maps, border crossing and border collision bifurcation.								
Unit – 2	TECHNIQUI PHENOMEN		INVI	ESTIGA	TION	OF	NON	LINEAR	09 hours
		of averages	under cl	haos, Čo					al investigation, omputation of the
Unit - 3	NONLINEAI				OC CON	VER	TERS		09 hours
	Border collision in the Current Mode controlled Boost Converter, Bifurcation and chaos in the Voltage controlled Buck Converter with latch, Bifurcation and chaos in the Voltage controlled Buck Converter without latch, Bifurcation and chaos in Cuk Converter. Nonlinear phenomenon in the inverter under tolerance band control								
Unit - 4	NONLINEAL								09 hours
	Nonlinear Phe Phenomenon i			nt contro	lled and	voltag	ge contr	colled DC	Drives, Nonlinear
Unit - 5	CONTROL O	OF CHAOS	5						09 hours
	Hysteresis con method, Time and drives.		-		-				hod, Pyragas lectronics circuit

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

Reference Books:	
1.	George C. Vargheese, July 2001 Wiley – IEEE Press S Banerjee, Nonlinear Phenomena in Power Electronics, IEEE Press.
2.	Steven H Strogatz, Nonlinear Dynamics and Chaos, Westview Press
3.	C.K.TSE Complex Behaviour of Switching Power Converters, CRC Press, 2003

YPE 106E Non Linear Dynamics for Power Electronic Circuits Course Outcomes (COs)

At the end of the course, the students will be able to

1. Ability to understand, model and simulate chaotic behavior in power electronic systems.

- 2. Ability to **mitigate** chaotic behavior noticed in power converters.
- 3. Discuss of Techniques for investigation of nonlinear phenomena.
- 4. Analyse the non linear phenomena in DC to DC converters.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Department	Electrical & Electronics Engineering	Course	255	Sub.	Code	1 I I I I I I I I I I I I I I I I I I I	205A N		Sub. Name		Smart Grid			
Year	Ι	SemesterIIRegulation2015Max Mark							1	100				
MODE OF I	EVALUATIO	ON & WEIGHTAGE (%)CreditH								Hou	Iours/ Week			
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P	Tota		L 3	T 0	P	Total 3	
15%	15%	20%	50%	100%	6 $L = 45; T = 0; P = 0;$					r	Fota	al = 4	45 hrs	
Objective (s)	meters and management	The objectives of this course are to Study about Smart Grid technologies, different smart meters and advanced metering infrastructure; to familiarize the power quality management issues in Smart Grid; to familiarize the high performance computing for Smart Grid applications												
Unit- 1		CTION TO SMART GRID								09 l	nours			
Unit- 2	Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, Concept of Resilient & Self Healing Grid, Present development & International policies in Smart Grid, Diverse perspectives from experts and global Smart Grid initiativesSMART GRID TECHNOLOGIES09 hours													
	Smart energy resources, Smart substations, Substation Automation, Feeder Automation, Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control, Distribution systems: DMS, Volt/VAr control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PHEV).													
Unit- 3	SMART INFRASTRU	METERS UCTURE	AN	D A	DVAN	ICED	Ι	METI	ER]	ING		09 I	nours	
	Introduction to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU), Intelligent Electronic Devices(IED) & their application for monitoring & protection.													
Unit- 4	POWER QU	ALITY MA	ANAGE	MENT	IN SM	IART	GRI	D				09 l	nours	
	Power Quality Energy Source monitoring, P	ces, Power (Quality (Conditic	-	-								
Unit- 5	HIGH PER APPLICATI		CE CC	OMPUT	ING	FOR	SM	ART	G	RID		09 1	nours	
	Broadband o	APPLICATIONS OP Hours Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart Grid.												

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, AkihikoYokoyama, "Smart Grid: Technology and Applications", Wiley
2.	Stuart Borlase "Smart Grid :Infrastructure, Technology and Solutions", CRC Press2012.
3.	Yang Xiao, Communication and Networking in Smart Grids, CRC press, 2012
Reference Books:	
1.	Nouredine Hadjsaïd and Jean-Claude SabonnadièreSmart, SmartGrids, ISTE Ltd. 2012.
2.	Vehbi C. Güngör, DilanSahin, TaskinKocak, Salih Ergüt, Concettina Buccella, Carlo Cecati, and Gerhard P. Hancke, Smart Grid Technologies: Communication Technologies and Standards IEEE Transactions On Industrial Informatics, Vol. 7, No. 4, November 2011.
3.	Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang "Smart Grid – TheNew and Improved Power Grid: A Survey", IEEE Transaction on Smart Grids.

YPE 205A – Smart Grid Course Outcomes (COs) At the end of the course, the students will be able to Describe the paradigm shift between traditional power transmission and distribution and smart power grids verbally and in writing. Understand and describe drivers, challenges and benefits to the integration of renewable and distributed generation into large power grids.

- 3. Describe and **assess** smart grid technologies that enhance transmission and distribution systems.
- 4. **Study** current implementations of smart grid technologies and/or policies using regional data sources.
- 5. Work effectively in project teams using appropriate communication skills in order to present information about smart grid industry practices and community engagement.

40% 1 Objective (s) Tin se m Unit - 1 E Introduction - Sy tariff types; Ene	CA2 10% To pro instrum selection method ENER System	ATION (%) CA3 20% ovide the nents. To dologies GY AUI	CA4 (End Sem) 30% e knowledge To give ide equipments s for minimu	Total 100% on ener ea about for ener im loss p D MEAS	L 3 $L = 45; T =$ gy audit and to t different en	o study t ergy ef tion. To ion syste	P 0 = 0; he differ ficiency o analyz em.	100Credit3Total = 45 hrsrent energy audit machineries to ze the different09 hours	
CA1C40%1Objective (s)T ir ir se mUnit - 1EIntroduction - Sy tariff types; Energy	CA2 10% To pro instrum selection method ENER System	(%) CA3 20% ovide the nents. To dologies GY AUI	CA4 (End Sem) 30% e knowledge To give ide equipments s for minimu	Total 100% on ener ea about for ener im loss p D MEAS	L 3 $L = 45; T =$ gy audit and to t different en ergy conserva bower distribut	T 0 = 00; P = o study t ergy ef tion. To ion syste	P 0 = 0; he differ ficiency o analyz em.	3 Total = 45 hrs ent energy audit machineries to the different	
40% 1 Objective (s) Tin se m Unit - 1 E Introduction - Sy tariff types; Ene	10%To proinstrumselectionmethodENERSystem	20% wide the nents. 7 on of o dologies GY AUI	(End Sem) 30% e knowledge To give ide equipments s for minimu DITING ANI	100% on ener ea about for ene um loss p D MEAS	3 L = 45; T = gy audit and to t different en ergy conserva power distribut	0 = 00; P = o study t ergy ef tion. To ion syste	0 = 0; he differ ficiency o analyz em.	Total = 45 hrs rent energy audit machineries to the different	
40% 1 Objective (s) Tin se m Unit - 1 E Introduction - Sy tariff types; Ene	10%To proinstrumselectionmethodENERSystem	20% wide the nents. 7 on of o dologies GY AUI	Sem) 30% e knowledge To give ide equipments s for minimu DITING ANI	100% on ener ea about for ene um loss p D MEAS	L = 45; T = gy audit and to t different en ergy conserva power distribut	= 00; P = o study t ergy ef tion. To ion syste	= 0; he differ ficiency o analyz em.	Total = 45 hrs rent energy audit machineries to the different	
Objective (s)T ir sc mUnit - 1EIntroduction - Sy tariff types; Energy	To pro instrun selectio methoo ENER(ovide the nents. T on of dologies GY AUI	e knowledge Fo give ide equipments s for minimu DITING ANI	on ener ea about for ene um loss p D MEAS	gy audit and to t different en ergy conserva oower distribut	o study t ergy ef tion. To ion syste	he differ ficiency o analyz em.	rent energy audit machineries to the different	
Objective (s)in so mUnit - 1EIntroduction - Sy tariff types; Ene	instrum selection method ENER(System	nents. To on of dologies GY AUI	To give ide equipments s for minimu DITING ANI	ea about for ene um loss p D MEAS	t different en ergy conserva oower distribut	ergy ef tion. To ion syste	ficiency o analyz em.	machineries to the different	
Introduction - Sy tariff types; Ene	System				URING INSTI	RUMEN	TS	09 hours	
tariff types; Ene		annroa	ah and End						
study.	Introduction - System approach and End use approach to efficient use of Electricity; Electricity tariff types; Energy auditing: Types and objectives-audit instruments- ECO assessment and Economic methods-specific energy analysis-Minimum energy paths-consumption models-Case study.								
Unit - 2 E	ENER	GY EFF	FICIENCY I	N ELEC	TRICAL MAC	HINES		09 hours	
Electric motors-Energy efficient controls and starting efficiency-Motor Efficiency and Load Analysis- Energy efficient /high efficient Motors-Case study; Load Matching and selection of motors. Methods of power factor improvements, location of power factor correction equipment's.									
Unit - 3 P	Unit - 3POWER DISTRIBUTION AND MEASUREMENT09 hours								
Onit - 3 POWER DISTRIBUTION AND MEASUREMENT 09 nours Transformer Loading/Efficiency analysis, Feeder/cable loss evaluation, case study. Reactive Power management-Capacitor Sizing-Degree of Compensation-Capacitor losses- Location-Placement-Maintenance case study; Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load scheduling-case study.									

Unit - 4	ENERGY CONSERVATION MEASURES	09 hours					
Electric loads .Types-Optim	eration-Types and Schemes-Optimal operation of cogeneration pl of Air conditioning & Refrigeration-Energy conservation measure al operation-case study; Electric water heating-Gysers-Solar Water in Compressors, Energy conservation measures; Electrolytic Pro ware's- EMS	es- Cool storage Heaters- Power					
Unit - 5ENERGY MANAGEMENT IN DRIVES AND DOMESTIC SYSTEMS09 hours							
and sizing -O	ble speed drives; Pumps and Fans-Efficient Control strategies- O ptimal operation and Storage; Case study Lighting- Energy efficient rvation in Lighting Schemes- Electronic ballast-Power quality iss	nt light sources-					
Text Books:							
1.	Smith CB Energy management Principles, Pergamom Press, New	York, 1981.					
2.	Albert Thumann, "Handbook of Energy Audits", Fairmont Pr; 5th	edition, 1998.					
Reference Books:							
1.	Giovanni Petrecca, "Industrial Energy Management:Principles an The Kluwer international series -207,(1999)	d Applications"					
2.	Anthony J. Pansini, Kenneth D. Smalling, "Guide to Electric Load Pennwell Pub; (1998)	d Management"					
3.	Howard E. Jordan, "Energy-Efficient Electric Motors and Thei Plenum Pub MCorp; 2nd edition (1994)	r Applications"					
4.	Turner, Wayne C. "Energy Management Handbook"., Lilburn, The 2001	e Fairmont Press,					

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

YPE 205B Energy Auditing Conservation and Management Course Outcomes (COs)

- 1. **Understand** the need for energy audit, types and methodologies of energy audit.
- 2. **Study** the different energy efficiency control techniques for improving the efficiency in power system
- 3. **Practice** the power management system in a distribution network to minimize the peak demand.
- 4. **Understand** the different lighting schemes and variable speed drive system for optimal operation of the electrical system.
- 5. **Compare** different methods of power factor improvement for reducing the losses in a distribution system.
- 6. **Analyze optimal** operation in cogeneration plant and to improve heat recovery schemes for minimum loss in a thermal system.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Department	Electrical & Electronics Engineering	Course	255	Sub. Code			PE 05C	Sub. Name		Special Electrical Machines			
Year	Ι	Semes	Regu	lation	20)15	Max Mark			100			
MODE OF I	EVALUATION	N & WEIG	HTAGI	E(%)		Cr	edit			I	Hou	rs/ V	Veek
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P	Tota 3	al	L 3	T 0	P	Total 3
15%	15%	20%	50%	100%	-	= 45; '	-	_	: 0:	-	_	-	l5 hrs
Objective (s)	To impart the Basic knowledge of synchronous reluctance motor. To understand the concepts of working principles and construction of stepping motors and switched reluctance motor. To impart the knowledge of permanent magnet brushless AC and DC motor.												
Unit – 1	SYNCHRONOUS RELUCTANCE MOTORS 09 hours												
	Constructional features – types – axial and radial air gap motors – operating principle – reluctance – phasordiagram - characteristics – Vernier motor.												
Unit –2	STEPPING												nours
	Constructiona motor – single non-linear and	e and Multi	stack co	nfigurat	ions –	theory	of to	orque	prec	dictio			
Unit –3	SWITCHED	RELUCT	ANCE N	AOTOF	RS							09 ł	nours
	Constructiona Nonlinear and			-		-	-			-			
Unit –4	PERMANEN	NT MAGNI	ET BRU	SHLES	SS DC	MOT	ORS					09 ł	nours
	Principle of o Torque Speed								owe	r Coi	ntrol	lers	-
Unit –5	PERMANEN	IT MAGNI	ET SYN	CHRO	NOUS	MOT	ORS	•				09 ł	nours
	Principle of o controllers - c microprocesso	onverter - v	olt-amp	-	-				-		<u> </u>		- power

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:											
1.	Miller, T.J.E., 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon Press, Oxford, 1989.										
2.	Aearnley, P.P., 'Stepping Motors – A Guide to Motor Theory and Practice', Peter Perengrinus, London, 1982.										
3.	P.P. Aearnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Peter Perengrinus, London, 1982.										
4.	R.Krishnan, 'Switched Reluctance Motor Drives – Modeling, Simulation, Analysis, Design and Application', CRC Press, New York, 2001.										
Reference Books:											
1.	Kenjo, T., 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1984.										
2.	Kenjo, T., and Nagamori, S., 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988.										
3.	K. Dhayalini, 'Special Electrical Machines', Anuradha Publications.										
4.	S.Albert Alexander, J.Gnanavadivel, "Special Electrical Machines", Anuradha Publications.										

YPE 205C –Special Electrical Machines Course Outcomes (COs)

- 1. Able to know the construction and working of synchronous motor.
- 2. **Describe** the construction and working of stepping motor.
- 3. Analyze the control and performance of stepping motor.
- 4. Understand the construction, working and performance of switched reluctance motor.
- 5. Illustrate the different types of power controllers of switched reluctance motor
- 6. Explain the construction and working of permanent magnet dc and synchronous motor
- 7. Handle the microprocessors based control using Permanent magnet synchronous motor.

Department	Power Electronics and Drives		Course Code	255	Sub. Code	YPE 205D	Sub. Name	Static Var Controllers and Harmonic filtering	
Year		Ι	Semester	II	Regulation	2015	Max Mark	100	
MODE OF EVALUATION & WEIGHTAGE(%)					Hours	s / Weel	ζ.	Credit	
			CA4		L	Т	Р		
CA1	CA2	CA3	(End Sem)	Total	3	0	0	4	
40%	10%	20%	30%	100%	L = 45; T =	= 00; P	= 0;	Total = 45 hrs	
Objective								e characteristics,	
(s) applications of series and shunt FACTS controllers. To analyze the power quality issues and harmonics.									
Unit - 1INTRODUCTION09 hours									
Transmission Current Harm Unit - 2 Static Reactiv Switched and Compensators	CONTROLLLERS Static Reactive Power Compensators and their control. Shunt Compensators, SVCs of Thyristor Switched and Thyristor Controlled types and their control, STATCOMs and their control, Series Compensators of Thyristor Switched and Controlled Type and their Control, SSSC and its Control, Sub-Synchronous Resonance and damping, Use of STATCOMs and SSSCs for								
Unit - 3	POW	ER SYS	STEM CON	VERTE	CR			09 hours	
Modulation St Pulse Convert Flying Capaci	Converters for Static Compensation. Single Phase and Three Phase Converters and Standard Modulation Strategies (Programmed Harmonic Elimination and SPWM). GTO Inverters . Multi-Pulse Converters and Interface Magnetics. Multi-Level Inverters of Diode Clamped Type and Flying Capacitor Type and suitable modulation strategies (includes SVM). Multi-level inverters of Cascade Type and their modulation. Current Control of Inverters.								
Unit - 4	Unit - 4STATIC VAR COMPENSATOR09 hours								
Active Filterin shunt active	Voltage control by SVC – design of SVC voltage regulator, Three Phase Three-wire Shunt Active Filtering and their control using p-q theory and d-q modelling . Three-phase four-wire shunt active filters. Hybrid Filtering using Shunt Active Filters . Series Active Filtering in Harmonic Cancellation Mode prevention of voltage instability.								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

Unit – 5	POWER QUALITY AND HARMONICS	09 hours

Power quality issues and its correction Current Harmonics - Sources of Harmonics in Distribution Systems and III Effects, Series Active Filtering in Harmonic Cancellation Mode. Series Active Filtering in Harmonic Isolation Mode. Dynamic Voltage Restorer and its control. Power Quality Conditioner.

Text Books:	
1.	R. Mohan MathurOntanio Power Generator Toronto, ON, Canada
2.	Rajvi K. Varma, IIT Kanpur –India
3.	Mathur R. M. and Varma R. K "Thyristor-based FACTS controllers for Electrical Transmission System", Wiley-IEEE press, 2002.
Reference	
Books:	
1.	Reactive Power Control in Electric Systems by T.J.E Miller
2.	Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems by N.G. Hingorani& L. GyugiIEEE Press, 2000
3.	Power Electronics by Ned Mohan et.al .
4.	Sood V. K., "HVDC and FACTS Controllers: Applications of Static Converters in Power Systems", Springer, 1 st edition, 2004.
5.	Acha E., Agelidis V. G., Anaya O., Miller T. J. E., "Power Electronics Control in Electrical Systems", Newnes Power Engineering Series, 2002.

YPE 205D Static Var Controllers and Harmonic filtering **Course Outcomes (COs)**

- 1. Understand the fundamentals of reactive power control and their compensation.
- Understand the principle of shunt and series compensator.. 2.
- 3. Analysis of transient and dynamic stability in power system..
- Apply the knowledge in different types of power converter.. 4.
- 5. Understand the concept of svc voltage regulator and filtering methods.
- 6. Gain the knowledge in power quality issues.

Department	Electrical & Electronics Engineering	Course Code 2.		255	Sub.	Code		7PE 05E		ıb. me	Wind Energy Conversion Systems			
Year	Ι	Semes	Regu	latio	n 2	015		lax ark	100					
MODE OF H	EVALUATION	N & WEIG	HTAGI	E(%)		Cı	redit]	Hou	rs/ V	Veek	
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P 0					P 0	Total 3	
15%	15%	20%	50%	100%	-	= 45;	-			-	0 Tota	-	15 hrs	
Objective (s)	To learn the design and control principles of Wind turbine. To understand the concepts of fixed speed and variable speed, wind energy conversion systems. To analyze the grid integration issues.													
Unit – 1	INTRODUC'	ΓΙΟΝ										09 ł	nours	
	Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-Power coefficient-Sabinin's theory-Aerodynamics of Wind turbine.													
Unit – 2	WIND TURBINES 09 hours													
	HAWT-VAWT-Power developed-Thrust-Efficiency-Rotor selection-Rotor design considerations-Tip speed ratio-No. of Blades-Blade profile-Power Regulation-yaw control-Pitch angle control-stall control-Schemes for maximum power extraction.													
Unit – 3	FIXED SPEE	ED SYSTE	MS						-			09 ł	nours	
	Generating Generators-I Generator- model- Gene	Deciding fa Model of rator model	actors-S Wind for Stea	ynchron Speed- ady state	ous Mode	Gene l wi	erator nd t	-Squ urbir	irrel ne r	C otor	age - I s.	In Drive		
Unit – 4	VARIABLE	SPEED SY	STEMS	5								09 ł	nours	
	Need of variable speed systems-Power-wind speed characteristics-Variable speed constant frequency systems synchronous generator- DFIG- PMSG -Variable speed generators modeling - Variable speed variable frequency schemes.													
Unit – 5	GRID CONN	ECTED S	YSTEM	IS								09 ł	nours	
	rate limitatio	Wind interconnection requirements, low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection impact on steady-state and dynamic performance of the power system including modeling issue.												

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:									
1.	L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990								
2.	S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.								
Reference Books:									
1.	Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.								
2.	E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge,1976.								
3.	N. Jenkins," Wind Energy Technology" John Wiley & Sons,1997								
4.	S.Heir "Grid Integration of WECS", Wiley 1998.								

YPE 205E - WIND ENERGY CONVERSION SYSTEMS Course Outcomes (Cos)

At the end of the course, the students will be able to

1. Understand the operation of Solar Thermal, Solar Photovoltaic and wind energy systems.

2. **Know** the operation of a wind form.

3. Understand the manufacturing process behind Solar Photovoltaic Systems.

4. Understand the manufacturing process behind small Wind Energy Systems.

Email: heade	ee@pmu.edu	Web: www. pr	NAAC ACCREDITED										
Department	Electrical & Electronics Engineering	Course Code255Sub. CodeYPE 206 ASub Nam					Soft Computing Techniques						
Year	Ι	Semes	II	Regu	Regulation)15	Max Mark		100			
MODE OF I	EVALUATION	N & WEIG	HTAGI	E(%)		C	redit]	Hou	rs/ V	Veek
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P 0		o tal 3	L 3	T 0	P	Total 3
15%	15%	20%	50%	100%	L =	45;	$\mathbf{T} = 0$	0; I	P = 0	;	Tota	al =	45 hrs
Objective (s)	understand th familiarized modeling and	To review the fundamentals of ANN and fuzzy set theory. To make the students understand the use of ANN for modeling and control of non- linear system and to get familiarized with the ANN tool box. To impart knowledge of using Fuzzy logic for modeling and control of non-linear systems and get familiarized with the FLC tool box. To familiarize the students on various hybrid control schemes such as ANFIS tool box.											
Unit - 1		OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN) 09 hours AND FUZZY LOGIC 09 hours											
	Single Layer algorithm (Bl cardinality, fu functions.	PA); Fuzzy	set the	ory – F	Fuzzy	sets -	- Ope	ratio	on or	n Fuz	zy s	sets	- Scalar
Unit - 2	NEURAL NI	ETWORKS	5 FOR N	NODEL	LING	ANI	D CO	NTF	ROL			09 ł	nours
	Modeling of training data using ANN- Network Con	- optimal a Direct and trol Tool Bo	architect Indirect	ure – N ct neuro	Iodel contr	valida ol sc	ation- heme	Con s -	ntrol	of n	on li	inear	system
Unit - 3	FUZZY LOO	GIC FOR M	10DEL	LING A	ND C	ONT	ROL					09 ł	nours
	Modeling of non linear systems using fuzzy models (Mamdani and Sugeno) –TSK model - Fuzzy Logic controller – Fuzzification – Knowledge base – Decision making logic – Defuzzification- Adaptive fuzzy systems. Familiarization of Fuzzy Logic Tool Box.												
Unit - 4	GENETIC A	LGORITH	IM									09 l	nours
	Basic concep parameters. S		0						-		,	nent	of free
Unit - 5	HYBRID CO	ONTROL S	CHEM	ES								09 ł	nours
	Fuzzification Optimization Familiarizatio	of memb	ership	function					•	•			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:											
1.	Laurene V.Fausett, "Fundamentals of Neural Networks, Architecture, Algorithms, and Applications", Pearson Education, 2008.										
2.	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", Wiley, Third Edition, 2010.										
3.	George J.Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall, First Edition, 1995.										
4.	S. Rajasekaran & G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI, 2003.										
Reference											
Books:											
1.	C.Cortes and V.Vapnik, "Support-Vector Networks, Machine Learning", 1995.										
2.	M. Mitchell, "An Introduction to Genetic Algorithms", Prentice-Hall, 1998.										
3.	W.T.Miller, R.S.Sutton and P.J.Webrose, "Neural Networks for Control", MIT Press, 1996.										
4.	S. N. Sivanandam & S. N. Deepa, Principles of Soft Computing, Wiley - India, 2007										

YPE 206A – Soft Computing Techniques Course Outcomes (COs)

- 1. Able to **define** and **recall** the **fundamentals** of Artificial Neural Network and Fuzzy Logic.
- 2. Ability to express and control linear and non linear systems using ANN and Fuzzy Logic.
- 3. Analyze and model fuzzy system of Mamdani and Sugeno type.
- 4. Create a linear or nonlinear control problem and solve it using genetic algorithm.
- 5. Build and analyze the combination of different soft computing techniques.

PERIYAR MANIAMMAI UNIVERSITY UNIVERSITY NAAC ACCREDITED

Department	Elect	wer ronics Drives	Course Code	255	Sub. Code	YPE 206B	Sub. Name	Flexible AC Transmission Systems.			
Year]	[Semester	II	Regulation	2015	Max Mark	100			
		EVALU HTAG	E(%)		Hour	s / Week		Credit			
<u></u>		~ • •	CA4		L						
CA1	CA2	CA3	(End Sem)	Total	3	0	0	4			
40%	10%	20%	30%	100%	L = 45; T	= 00; P=	• 0;	Fotal = 45 hrs			
Objective	To en	nphasis	the need	for FAC	CTS controller	rs. To le	earn the	characteristics,			
(s)	applic	ations a	and modellin	ng of sea	ries and shunt	FACTS	controll	ers. To analyze			
	the interaction of different FACTS controller and perform control coordination.										
Unit - 1	INTR	ODUC	TION					09 hours			
Review of ba	Review of basics of power transmission networks-control of power flow in AC transmission										
line-Analysis	line-Analysis of uncompensated AC Transmission line- Passive reactive power compensation:										
Effect of seri	es and s	shunt co	ompensation	at the m	id-point of the	e line on p	power tra	nsfer- Need for			
FACTS contr	collers-	types of	f FACTS co	ntrollers	•						
Unit - 2	STAT	TIC VA	R COMPE	NSATO	R (SVC)			09 hours			
Configuration	n of SV	C- volt	age regulati	on by S	VC- Modellin	g of SVC	C for load	d flow analysis-			
Modelling of	SVC 1	for stab	ility studies	-Design	of SVC to reg	gulate the	e mid-po	int voltage of a			
SMIB system	n- Appl	ications	s: transient s	tability e	enhancement a	and powe	r oscillat	ion damping of			
SMIB system	n with S	VC cor	nnected at th	e mid-po	oint of the line						
Unit - 3					RISTOR CO and GCSC)	NTROL	LED	09 hours			
Concepts of						f TCSC a	and GCS	C- Analysis of			
								ling TCSC and			
GCSC for sta	bility s	tudied-	Application	s of TCS	SC and GCSC.						
Unit - 4 VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS								09 hours			
Static synchr	onous c	compen	sator (STAT	COM)-	Static synchro	nous seri	es compe	ensator (SSSC)-			
Operation of	f STA	ТСОМ	and SSSC	C-Power	flow control	with S	TATCO	M and SSSC-			
Modelling of	Modelling of STATCOM and SSSC for power flow and transient stability studies –operation of										
Unified and Interline power flow controllers (UPFC and IPFC) - Modeling of UPFC and IPFC											
Unified and	Interlin	e powei	flow contro	ollers (U	PFC and IPFC	C) - Mode	eling of U	JPFC and IPFC			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Unit- 5	CONTROLLERS AND THEIR COORDINATION	09 hours								
FACTS Controller interactions – SVC–SVC interaction - co-ordination of multiple controllers										
using linear o	using linear control techniques – Quantitative treatment of control coordination.									
Text Books:										
1.	A.T.John, "Flexible AC Transmission System", Institution of Electronic Engineers (IEEE), 1999.	Electrical and								
2.	NarainG.Hingorani, Laszio. Gyugyl, "Understanding FACTS Concepts and Technology of Flexible AC Transmission System", Standard Publishers, Delhi 2001.									
Reference Books:										
1.	V. K.Sood, "HVDC and FACTS controllers- Applications of Stati Power System", 2004, Kluwer Academic Publishers.	ic Converters in								
2.	Mohan Mathur, R., Rajiv. K. Varma, "Thyristor – Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc.									
3.	V. K.Sood, "HVDC and FACTS controllers- Applications of Stati Power System", 2004, Kluwer Academic Publishers.	ic Converters in								
4.	Acha E., Agelidis V. G., Anaya O., Miller T. J. E., "Power Electro Electrical Systems", Newnes Power Engineering Series,2002.	onics Control in								

YPE 206B Flexible AC Transmission Systems.

- 1. **Understand** the importance of controllable parameters and benefits of FACTS controllers.
- 2. **Know** the significance of shunt, series compensation and role of FACTS devices on system control.
- 3. Analyze the functional operation and control of GCSC, TSSC and TCSC.
- 4. **Describe** the principles, operation and control of UPFC and IPFC..
- 5. Analyze SVC and SVS controller interaction.

Department	Power Electronic and Drive	cs	Course Code	255	Sub. Cod	e YPI 2060		Computer Aided Design of Electrical machines				
Year	Ι	S	emester	II	Regulation	n 201:	5 Max Mark	100				
MODE OF E	VALUATIC	N & WI	EIGHTAC	GE (%)	H	ours/ We	ek	Credit				
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P 0	3				
15%	15%	20%	50%	100%	L = 45;	T = 0;	P = 0; 7	Total = 45 hrs				
Objective (s)	related fie engineering	This course prepares students to work professionally in the area of power and power related fields. Students should be able to apply knowledge of mathematics and engineering, and identify numerical models to solve electromagnetic problems in electrical engineering.										
Unit - 1	INTRODU	JCTION						08 hours				
		Conventional design procedures – Limitations – Need for field analysis based design – Review of Basic Principles of Energy Conversion – Development Torque/Force.										
Unit - 2		MATHEMATICAL FORMULATION OF FIELD PROBLEMS 09 hours										
	Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector /Scalar potential – Stored energy in field problems – Inductance- Capacitance - Laplace and Poisson's Equations – Energy functional.											
Unit - 3	PHILOSO	PHY OI	F FEM					10 hours				
	Finite elem	ent meth	od – Energ	gy minim	U 1	riational	method- 2D	erence method – field problems – s.				
Unit - 4	CAD PAC		•				•	09 hours				
	properties-	Boundar	y Conditio		processing – ting up solution							
Unit - 5	DESIGN A	APPLIC	ATIONS					09 hours				
	0				tance and Fance Motor.	orce calc	ulation - In	duction Motor –				
Text Books:												
1.	S.J Salon, Publishers,			Analysi	s of Elect	rical M	achines."Kl	uwer Academic				
2.	S.R.H.Hoo Elsevier, N				•	Design o	of Electrom	agnetic Devices,				
3.	Nicola Bia Francis 200		ectrical M	Iachine A	Analysis Usi	ng Finite	e Elements"	, CRC Taylor &				

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Reference Books:	
1.	D.A.Lowther and P.P Silvester, Computer Aided Design in Magnetics, Springer verlag,
1.	New York, 1956.
2.	C.WThrowbridge, "An introduction to computer aided electromagnetic analysis", Vector
۷.	field Ltd.
3.	Joao Pedro, A. Bastos and Nelson Sadowski, "Electromagnetic modeling by Finite
5.	Element Methods", Marcell Dekker Inc., 2003.
4.	User Manuals of MAGNEI, MAXWELL & ANSYS software.
1	

YPE206C – Computer Aided Design Of Electrical Machines Course Outcomes (COs)

- 1. To formulate electromagnetic field equations using magnetic vector potential
- 2. To formulate and solution of Laplace and Poisson's equations
- 3. Able to describe and analysis of various electromagnetic problems using finite difference method.
- 4. Able to describe and analysis of various different electromagnetic problems using 2-D finite element method.
- 5. To know CAD packages for solving time invariant and time variant electromagnetic field problems.
- 6. To develop model for electrical apparatus and its solutions in CAD package.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Department	Electrical & Electronics Engineering	Course	Code	255	Sub.	Code		PE)6D		ub. 1me		En Sto	r and ergy rage stem
Year	Ι	Semes	ter	II	Regu	latior	n 20	015		lax ark	100		00
MODE OF F	EVALUATION	N & WEIG	HTAGI	E(%)		Cr	edit			ł	Hours/ Week		
CA 1	CA 2	CA 3	CA 4	Total	L T P Total L 3 0 0 3 3						T 0	P	Total 3
15%	15%	20%	50%	100%		L	= 45;		To	tal =	45	Hrs	
Objective (s)	interconnectionsystem. To E	To impart the Basic knowledge of semiconductors, cell properties and their interconnection. To understand the concept of solar modules and design of standalone PV ystem. To Deal with grid connected PV systems. To Discuss about different energy torage systems. To give exposure to different applications of PV systems and its storage ystems.											
Unit - 1	INTRODUC	TION									(09 H	Hours
		Characteristics of sunlight – Semiconductors and PN junctions – Behavior of solar cells – Cell properties – PV cell interconnection.											
Unit - 2	STANDALO	NE PV SY	STEM									09 H	Hours
	Solar module Stand alone P	v	•		wer co	nditio	oning	and r	egu	latio	n -	Prot	ection –
Unit - 3	GRID CONN	NECTED P	V SYST	TEMS								09 H	Hours
	PV Systems i aspect – Effic	-	-				-			– Sa	fety	– E	conomic
Unit - 4	ENERGY ST	FORAGE S	SYSTEN	/IS							(09 H	Hours
	Battery Basic - Impact of it storage – Pun	ntermittent	generati	on – Er	nergy s								
Unit - 5	APPLICATI	ONS										09 H	Hours
	1 1	Water pumping – Battery chargers – Solar car – Direct-drive applications – Space – Telecommunications.											
Text Books:													
1.	Eduardo Los Systems, Prog		Araujo,	1994. \$	Solar 1	Electri	city	Engin	neer	ing	of	Phot	tovoltaic
2.	Stuart R. We Applied Photo				Murie	E. V	Watt	and	Ric	hard	Co	orkisl	h, 2007.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

Reference Books:	
1.	Frank S. Barnes and Jonah G. Levine, 2011. Large Energy Storage Systems Handbook, CRC Press.
2.	McNeils, Frenkel and Desai, 1990. Solar & Wind energy Technologies, Wiley Eastern.
3.	Sukhatme, S.P., 1987. Solar Energy, New Delhi: Tata McGraw-Hill.

YPE 206D – Solar and Energy Storage System Course Outcomes (COs)

- 1. **Recognize and reproduce** Basic knowledge of semiconductors, cell properties and their interconnection.
- 2. Gain the knowledge in the solar modules & system and **design** the standalone PV system for specific applications.
- 3. Classify the various PV systems in buildings and manage the issues for central power stations.
- 4. **Define** the various types of energy storage systems.
- 5. **Employ** different applications of PV systems and its storage systems.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Department	Power Electronics and Drives	Course	Code	255	Sub. (Code	YPE 2061		Application of MEMS Technology			
Year	Ι	Seme	ester	II	Regul	ation	2015	5 Max Mark	100			
MODE OF I	EVALUATION	& WEIG	HTAGE	E(%)		Hour	s/We	eek	Credit			
CA 1	CA 2	CA 3	CA 4	CA 4 Total		T	.	Р				
CAI		CA J	CA4	10(a)	3	C	3					
40%	10%	20%	30%	100%	L = 45; T = 0; P = 0;				Total = 45 hrs			
Objective (s)	teach the design characterizing t	To teach the students properties of materials, microstructure and fabrication methods. To teach the design and modeling of Electrostatic sensors and actuators. To teach the characterizing thermal sensors and actuators through design and modeling. To teach the fundamentals of piezoelectric sensors and actuators. To give exposure to different MEMS and NEMS devices										
Unit - 1		MEMS:MICRO-FABRICATION, MATERIALS AND ELECTRO- MECHANICAL CONEPTS. 09 hours										
	flexural beam b quality factor.	luctivity o ending an	f semico alysis-to	nductors rsion de	S-Crysta flections	l plane -Intrin	s and	orientation-	on processes – stress and strain- nt frequency and			
Unit - 2	ELECTROST	ATIC SE	NSORS	AND A	CTUAT	TION			09 hours			
	Principle, mate sensors and actu		0		on of p	oarallel	plate	e capacitors	as electrostatic			
Unit - 3	THERMAL SI	ENSING	AND AC	CTUAT	ION				09 hours			
	Principle, mater thermal resistor				n of the	ermal c	couple	s, thermal	bimorph sensors,			
Unit - 4	PIEZOELECT	PIEZOELECTRIC SENSING AND ACTUATION 09 hours										
		Piezoelectric effect-cantilever piezo electric actuator model-properties of piezoelectric materials-Applications.										
Unit - 5	CASE STUDI	ES							09 hours			
	Piezoresistive applications, Op		-			Micro	fluic	lics applic	ations, Medical			

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Reference Books:	
1.	Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
2.	Marc Madou, "Fundamentals of microfabrication", CRC Press, 1997.
3.	Boston, "Micromachined Transducers Sourcebook", WCB McGraw Hill, 1998.
4.	1. M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000.
5.	P. RaiChoudry" MEMS and MOEMS Technology and Applications", PHI, 2012.
6.	Stephen D. Senturia, "Microsystem Design", Springer International Edition, 2011.

YPE 206E Application of MEMS Technology **Course Outcomes (COs)**

At the end of the course, the students will be able to

1. The learning process delivers insight onto design of micro sensors, embedded sensors & actuators in power aware systems like grid.

2. Improved employability and entrepreneurship capacity due to knowledge up gradation on recent trends in embedded systems design.

3. Discuss the properties of materials, microstructure and fabrication methods.

4. Design and modeling of Electrostatic sensors and actuators.

5. Understand the fundamentals of piezoelectric sensors and actuators.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

YPE 106A- Power Electronics for Renewable Energy Systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	1	2	-	2	-	3	-	2
CO2	2	2	-	1	1	2	3	-	-
CO3	1	3	-	3	-	2	2	-	2
CO4	-	3	-	1	2	1	-	2	-
CO5	-	3	-	-	1	-	-	1	1
CO6	1	-	3	3	-	-	2	-	-
CO7	1	2	3	1	-	-	-	1	-
		2	Supr		2 L	Lighly	nalatad		

1-Slightly

2 – Supportive

3 – Highly related

YPE106B Microcontroller Based System Design

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	1	-	-	-	-	-	-	1
CO2	2	1	-	3	1	-	-	-	-
CO3	3	3	-	1	1	-	-	-	-
CO4	3	1	2	3	-	2	1	-	-
CO5	3	2	1	3	-	1	-	-	1

1-Slightly

2 – Supportive

3 – Highly related

YPE 106C System Theory:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	-	-	-	-	-	-	1
CO2	3	1	2	3	-	-	1	-	-
CO3	3	1	-	3	1	-	1	-	-
CO4	3	3	-	1	1	-	-	-	-
CO5	3	2	1	3	-	-	-	-	1

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

YPE 106D – Electro Magnetic Interferences and Harmonic Elimination

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	1	2	-	2	-	-	-	2
CO2	2	1	1	1	-	-	-	1	2
CO3	2	1	3	1	1	-	-	2	2
CO4	1	-	2	2	1	-	-	1	2
CO5	1	2	-	-	1	-	-	-	3

1-Slightly

2 – Supportive

3 – Highly related

YPE 106E Non Linear Dynamics for Power Electronic Circuits

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	2	1	-	-	-	-	-	1
CO2	2	1	2	-	-	-	-	-	1
CO3	2	1	-	-	1	-	-	-	-
CO4	3	1	-	1	1	-	-	-	1

1- Slightly

2 – Supportive

3 – Highly related

YPE 205A Smart Grid

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	1	2	-	2	-	3	-	2
CO2	-	-	-	1	-	-	-	-	2
CO3	1	-	-	-	1	-	-	-	-
CO4	-	-	2	2	-	-	-	-	2
CO5	-	-	-	-	-	-	3	-	3
					-	-			-

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

YPE 205B Energy Auditing Conservation and Management

	- 0,	/								
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
	CO1	3	1	2	-	2	-	2	-	2
	CO2	1	-	-	1	-	-	-	-	2
	CO3	1	-	-	-	1	-	1	-	-
	CO4	-	3	2	2	-	-	-	-	2
	CO5	-	-	-	-	-	-	3	-	3
	CO6	1	-	-	1	2	-	2	-	1
1- Slightly	•	•	2	– Supp	ortive	•	•	3 – I	lighly	related

YPE 205C Special Electrical Machines

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	-	2	-	-	-	-	-	-
CO2	1	2	1	3	1	-	-	-	2
CO3	-	-	-	-	-	1	2	-	1
CO4	1	1	2	2	1	-	-	-	2
CO5	1	-	2	-	-	-	-	-	-
CO6	1	2	1	3	1	-	-	-	2
CO7	-	-	-	-	-	1	2	-	1

1-Slightly

2 – Supportive

3 – Highly related

YPE 205D Static Var Controllers and Harmonic filtering

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
1		2	1	2	-	3	-	2
-	-	-	1	-	-	-	-	2
1	-	-	-	1	3	-	-	-
1	-	2	2	-	-	-	-	
-	1	-	-	-	-	3	-	3
1	-	-	1	2	-	2	-	1
	PO1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 1	PO1 PO2 1 - - - 1 - - 1 - 1 - 1	1 2 - - - 1 - -	1 2 1 - - - 1 1 - - -	1 2 1 2 - - - 1 - 1 - - - 1	1 2 1 2 - - - - 1 - - 1 - - 1 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

YPE 205E – Wind Energy Conversion Systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	2	3	-	-	-	3
CO 2	3	2	1	1	2	-	-	-	2
CO 3	3	3	2	3	2	-	-	1	3
CO 4	-	-	-	1	-	-	-	-	1

1- Slightly

2 – Supportive

3 – Highly related

YPE 206A – Soft Computing Techniques:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	-	2	1	2	1	-	-	-
CO2	2	3	-	1	-	-	2	1	-
CO3	-	-	3	-	2	1	1	1	2
CO4	1	2	2	-	-	3	1	-	-
CO5	-	2	3	2	3	1	-	1	-
L				1	1	1	1	1	

1-Slightly

2 – Supportive

3 - Highly related

YPE 206B Flexible AC Transmission Systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	2	2	-	2	-	-	-	2
CO2	1	2	-	1	-	-	-	-	2
CO3	2	2	-	-	1	-	-	-	-
CO4	2	1	2	2	-	-	-	-	2
CO5	-	-	-	-	-	-	-	-	2

1-Slightly

2 – Supportive

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

YPE 206C – Computer Aided Design of Electrical Machines :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	2	1	1	2	-	-	-	-
CO2	1	2	2	2	2	-	-	-	1
CO3	2	1	3	1	2	-	-	-	1
CO4	1	1	2	2	1	-	-	-	-
CO5	2	2	2	1	1	-	-	-	1
CO6	2	2	2	1	2	-	-	-	-
ightly			2 -	- Supp	ortive			3 – H	ighly

YPE 206D –Solar and Energy Storage System

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	1	1	1	1	2	1	2	-	-
CO2	1	1	2	3	2	1	1	-	-
CO3	2	1	1	2	1	1	1	-	-
CO4	1	2	2	2	1	-	1	-	-
CO5	1	1	1	1	1	1	-	-	-

1-Slightly

2 – Supportive

3 – Highly related

YPE 206E Application of MEMS Technology

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	-	-	-	1	-	1
CO2	3	1	1	-	-	3	2	1	-
CO3	-	2	-	-	1	-	-	-	-
CO4	3	2	2	-	-	-	-	-	-
CO5	-	1	1	-	-	-	-	-	1

1- Slightly

2-Supportive